As a final remark, we reckon that although materials aspects are essential in bioelec­

tronics, a bottleneck for this multidisciplinary area is the lack of communication among

scientists with different backgrounds. This issue can be overcome by creating a fertile

environment based on collaborations between many different groups and institutions, in

which this community can grow. Bioelectronics is an outstanding challenge of the 21st

century that can provide new tools for translational medicine.

References

1. J. Rivnay, R.M. Owens, G.G. Malliaras, The rise of organic bioelectronics, Chem. Mater. 26

(2014) 679–685.

2. C. Pitsalidis, A.-M. Pappa, A.J. Boys, Y. Fu, C.-M. Moysidou, D. van Niekerk, J. Saez, A.

Savva, D. Iandolo, R.M. Owens, Organic bioelectronics for in vitro systems, Chem. Rev 122

(2022) 4700–4790.

3. G. Lanzani, Materials for bioelectronics: Organic electronics meets biology, Nat. Mater. 13

(2014) 775–776.

4. J.L. Carvalho-de-Souza, J.S. Treger, B. Dang, S.B.H. Kent, D.R. Pepperberg, F. Bezanilla,

Photosensitivity of neurons enabled by cell-targeted gold nanoparticles, Neuron. 86 (2015)

207–217.

5. Y. Jiang, R. Parameswaran, X. Li, J.L. Carvalho-de-Souza, X. Gao, L. Meng, F. Bezanilla,

G.M.G. Shepherd, B. Tian, Nongenetic optical neuromodulation with silicon-based materials,

Nat. Protoc. 14 (2019) 1339–1376.

6. J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burns,

A.B. Holmes, Light-emitting diodes based on conjugated polymers, Nature. 347 (1990) 539–541.

7. G.M. Paternò, M.W.A. Skoda, R. Dalgliesh, F. Cacialli, V.G. Sakai, Tuning fullerene inter­

calation in a Poly (thiophene) derivative by controlling the polymer degree of self-

organisation, Sci. Rep. 6 (2016) 34609.

8. G.M. Paternò, J.R. Stewart, A. Wildes, F. Cacialli, V.G. Sakai, Neutron polarisation analysis of

Polymer:Fullerene blends for organic photovoltaics, Polymer (Guildf). 105 (2016) 407–413.

9. H. Sirringhaus, P.J. Brown, R.H. Friend, M.M. Nielsen, K. Bechgaard, B.M.W. Langeveld-

Voss, A.J.H. Spiering, R.A.J. Janssen, E.W. Meijer, P. Herwig, D.M. De Leeuw, Two-

dimensional charge transport in self-organized, high-mobility conjugated polymers, Nature.

401 (1999) 685–688.

10. M. Berggren, A. Richter-Dahlfors, Organic bioelectronics, Adv. Mater. 19 (2007) 3201–3213.

11. T.J. Rivers, T.W. Hudson, C.E. Schmidt, Synthesis of a novel, biodegradable electrically

conducting polymer for biomedical applications, Adv. Funct. Mater. 12 (2002) 33–37.

12. M.D. Angione, S. Cotrone, M. Magliulo, A. Mallardi, D. Altamura, C. Giannini, N. Cioffi, L.

Sabbatini, E. Fratini, P. Baglioni, G. Scamarcio, G. Palazzo, L. Torsi, Interfacial electronic

effects in functional biolayers integrated into organic field-effect transistors, Proc. Natl. Acad.

Sci. U. S. A. 109 (2012) 6429–6434.

13. J. Isaksson, P. Kjäll, D. Nilsson, N. Robinson, M. Berggren, A. Richter-Dahlfors, Electronic

control of Ca2+ signalling in neuronal cells using an organic electronic ion pump, Nat. Mater.

6 (2007) 673–679.

14. C. Pitsalidis, A.M. Pappa, M. Porel, C.M. Artim, G.C. Faria, D.D. Duong, C.A. Alabi, S.

Daniel, A. Salleo, R.M. Owens, Biomimetic electronic devices for measuring bacterial

membrane disruption, Adv. Mater. 30 (2018) 1–8.

15. G.P. Kittlesen, H.S. White, M.S. Wrighton, Chemical derivatization of microelectrode arrays by

oxidation of pyrrole and n-methylpyrrole: Fabrication of molecule-based electronic devices,

J. Am. Chem. Soc. 106 (1984) 7389–7396.

68

Bioelectronics